Discussion 6 Worksheet Tangent Planes and Linear Approximations

Date: 9/13/2021
MATH 53 Multivariable Calculus

1 Tangent Planes

Find the tangent planes to the graphs of each of the following functions at an arbitrary point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

1. $f(x, y)=x^{2}+2 x y+y^{2}$
2. $f(x, y)=e^{x y}$.
3. $f(x, y)=\sin x$.

2 More Tangent Planes

1. Find an equation for the tangent plane to the graph of $f(x, y)=\cos (x y)$ passing through the point ($\pi / 2,1,0$).
2. Find a parametric equation for a line contained in the tangent plane you found in the previous problem. (Any line will suffice.)

3 Linear Approximations

1. Find the best linear approximation to each of the following functions near the corresponding input values.
a) $f(x, y)=y^{2}-x$ near the input $(3,0)$.
b) $g(x, y)=e^{x} \cos y$ near the input $(5, \pi / 2)$.
c) $h(x, y, z)=x y z$ near the input $(3,0,2)$.
d) $p(x, y, z, w)=x^{2}+y^{2}+z^{2}+w^{2}$ near the input $(0,1,0,-1)$.
2. Consider a differentiable function $f(x, y)$ with values given by the following table.

	$x=1.0$	$x=1.2$
$y=0.0$	5.2	5.4
$y=0.2$	6.0	6.2

a) Find the best linear approximation to $f(x, y)$ near the input value $(1.0,0.0)$.
b) Use this linear approximation to compute approximate values for $f(1.0,0.1), f(1.1,0.0)$ and $f(1.1,0.1)$.

4 Implicit differentiation

1. Find $\partial z / \partial x, \partial z / \partial y$ and $\partial x / \partial y$ when x, y and z satisfy the relation $x^{2}+y^{2}+z^{2}=3 x y z$.
2. (Challenge) Suppose that x, y, z are related by an equation $F(x, y, z)=0$ (this is the setup for implicit differentiation). Show that

$$
\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=-1
$$

5 Challenge

1. Let S be a sphere centered at the origin in \mathbb{R}^{3}, and consider any point P on S. Show that the vector $\overrightarrow{O P}$ is orthogonal to the tangent plane to S at P.

6 True/False

Supply convincing reasoning for your answer.
(a) T F The vector $\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$ is orthogonal to the tangent plane of the graph of $f(x, y)$ through the point $\left(x_{0}, y_{0}, z_{0}\right)$.
(b) T F Any tangent plane to a graph must meet that graph in exactly one point.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

