Discussion 6 Worksheet Tangent Planes and Linear Approximations

Date: 9/13/2021

MATH 53 Multivariable Calculus

1 Tangent Planes

Find the tangent planes to the graphs of each of the following functions at an arbitrary point $(x_0, y_0, f(x_0, y_0))$.

- 1. $f(x,y) = x^2 + 2xy + y^2$
- 2. $f(x, y) = e^{xy}$.
- 3. $f(x, y) = \sin x$.

2 More Tangent Planes

- 1. Find an equation for the tangent plane to the graph of $f(x, y) = \cos(xy)$ passing through the point $(\pi/2, 1, 0)$.
- 2. Find a parametric equation for a line contained in the tangent plane you found in the previous problem. (Any line will suffice.)

3 Linear Approximations

- 1. Find the best linear approximation to each of the following functions near the corresponding input values.
 - a) $f(x,y) = y^2 x$ near the input (3,0).
 - b) $g(x,y) = e^x \cos y$ near the input $(5, \pi/2)$.
 - c) h(x, y, z) = xyz near the input (3, 0, 2).
 - d) $p(x, y, z, w) = x^2 + y^2 + z^2 + w^2$ near the input (0, 1, 0, -1).
- 2. Consider a differentiable function f(x, y) with values given by the following table.

	x = 1.0	x = 1.2
y = 0.0	5.2	5.4
y = 0.2	6.0	6.2

- a) Find the best linear approximation to f(x, y) near the input value (1.0, 0.0).
- b) Use this linear approximation to compute approximate values for f(1.0, 0.1), f(1.1, 0.0)and f(1.1, 0.1).

4 Implicit differentiation

- 1. Find $\partial z/\partial x$, $\partial z/\partial y$ and $\partial x/\partial y$ when x, y and z satisfy the relation $x^2 + y^2 + z^2 = 3xyz$.
- 2. (Challenge) Suppose that x, y, z are related by an equation F(x, y, z) = 0 (this is the setup for implicit differentiation). Show that

$$\frac{\partial x}{\partial y}\frac{\partial y}{\partial z}\frac{\partial z}{\partial x} = -1$$

5 Challenge

1. Let S be a sphere centered at the origin in \mathbb{R}^3 , and consider any point P on S. Show that the vector \overrightarrow{OP} is orthogonal to the tangent plane to S at P.

6 True/False

Supply convincing reasoning for your answer.

- (a) T F The vector $\langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$ is orthogonal to the tangent plane of the graph of f(x, y) through the point (x_0, y_0, z_0) .
- (b) T F Any tangent plane to a graph must meet that graph in exactly one point.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.